Date of Award
2017
Degree Type
Thesis
Degree Name
Master of Science in Computer Science
Department
Computer Science and Statistics
First Advisor
Edmund Lamagna
Abstract
The shortest path problem, or the Steiner problem, is an interesting problem with numerous real-world applications. Historically the Steiner problem has been studied for the Euclidean plane and for rectilinear distances. Both problems have been proven to be NP-hard. In this research, we look into the Steiner problem on a triangular grid and show that the problem is NP-hard. We explore exact algorithms for constructing a shortest network that optimally interconnects a set of terminal points on a grid. Moreover, we look at a heuristic algorithm to solve the problem and provide a conjecture on the bound of the approximation it produces.
Recommended Citation
Mei, Jie, "Shortest Connection Networks on Triangular Grids" (2017). Open Access Master's Theses. Paper 1237.
https://digitalcommons.uri.edu/theses/1237
Terms of Use
All rights reserved under copyright.