Document Type
Article
Date of Original Version
9-1-1995
Abstract
We use extensive Monte Carlo transfer-matrix calculations on infinite strips of widths L up to 30 lattice spacing and a finite-size scaling analysis to obtain critical exponents and conformal anomaly number c for the two-dimensional XY Ising model. This model is expected to describe the critical behavior of a class of systems with simultaneous U(1) and Z2 symmetries of which the fully frustrated XY model is a special case. The effective values obtained for c show a significant decrease with L at different points along the line where the transition to the ordered phase takes place in a single transition. Extrapolations based on power-law corrections give values consistent with c=3/2 although larger values cannot be ruled out. Critical exponents are obtained more accurately and are consistent with previous Monte Carlo simulations suggesting critical behavior and with recent calculations for the frustrated XY model.
Citation/Publisher Attribution
Nightingale, M. P., Granato, E., & Kosterlitz, J. M. (1995). Conformal anomaly and critical exponents of the XY Ising model. Physical Review B, 52(10), 7402-7411. doi: 10.1103/PhysRevB.52.7402
Available at: http://dx.doi.org/10.1103/PhysRevB.52.7402
Terms of Use
All rights reserved under copyright.
Publisher Statement
© 1995 The American Physical Society