Predicting underwater radiated noise levels due to the first offshore wind turbine installation in the U.S.

Document Type

Conference Proceeding

Date of Original Version

6-19-2013

Abstract

Noise generated by offshore impact pile driving radiates into the air, water and sediment. Predicting noise levels around the support structures at sea is required to estimate the effects of the noise on marine life. Based on high demands developing renewable energy source, the United States will begin the first pile driving within one to two years. It is necessary to investigate acoustic impact using our previously verified coupled Finite Element (Commercial FE code Abaqus) and Monterey Miami Parabolic Equation (2D MMPE) models (J. Acoust. Soc. Am. 131(4), p. 3392, 2012). In the present study, we developed a new coupled FE-MMPE model for the identification of zone of injury due to offshore impact pile driving. FE analysis produced acoustic pressure outputs on the surface of the pile which are used as a starting field for a long range 2D MMPE propagation model. It calculates transmission loss for N different azimuthal directions as function of distance from the location of piling with the inputs of corresponding bathymetry and sediment properties. We will present predicted zone of injury by connecting N different distances of equivalent level fishes may get permanent injury due to the first offshore wind farm installation in the U.S. © 2013 Acoustical Society of America.

Publication Title, e.g., Journal

Proceedings of Meetings on Acoustics

Volume

19

Share

COinS