Date of Award

2018

Degree Type

Dissertation

Degree Name

Doctor of Philosophy in Interdisciplinary Neuroscience

Department

Interdisciplinary Neuroscience

First Advisor

Walter G. Besio

Abstract

Knowing where sources of electroencephalography (EEG) signals are located in the brain can help with diagnosis and surgical planning for patients with epilepsy. Source localization of signals acquired on the scalp is an ill-posed problem since there are an infinite number of inverse configurations that can result in the same potential distribution on the head surface. Therefore, additional constraints to the source space must be used to find a unique solution. Distributed source methods constrain the source space to a large number of dipoles distributed on the cortical surface or within the brain, but they yield an underdetermined solution. Used with conventional EEG and its limited spatial resolution, these localization methods produce poor resolution. There exists a need to better localize sources of activity measured on the scalp before the use of invasive procedures and their risks. Tripolar EEG (tEEG), i.e., EEG recorded with the tripolar concentric ring electrode (TCRE), has increased spatial resolution and signal-to-noise ratio, and it more readily detects high frequency biomarkers of epileptogenic zones than conventional, noninvasive measurements. This research explores the effects of these tEEG advantages on localization with distributed source methods and its potential in clinical use.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.