Date of Award

2016

Degree Type

Dissertation

Degree Name

Doctor of Philosophy in Chemical Engineering

Department

Chemical Engineering

First Advisor

Geoffrey D. Bothun

Abstract

Novel liposome-nanoparticle assemblies (LNAs) provide a biologically inspired route for designing multifunctional bionanotheranostics. LNAs combine the benefits of lipids and liposomes to encapsulate, transport, and protect hydrophilic and hydrophobic therapeutics with functional nanoparticles. Functional nanoparticles endow LNAs with additional capabilities, including the ability to target diseases, triggered drug release, controlled therapeutic output, and diagnostic capabilities to produce a drug delivery system that can effectively and efficiently deliver therapeutics while reducing side effects. Not only could LNAs make existing drugs better, they could also provide an avenue to allow once promising non-approved drugs (rejected due to harmful side effects, inadequate pharmacokinetics, and poor efficacy) to be safely used through targeted and controlled delivery directly to the diseased site. LNAs have the potential to be stimuli responsive, delivering drugs on command by external (ultrasound, RF heating, etc.) or internal (pH, blood sugar, heart rate, etc.) stimuli. Individually, lipids and nanoparticles have been clinically approved for therapy, such as Doxil (a liposomal doxorubicin for cancer treatment), and diagnosis, such as Feridex (an iron oxide nanoparticle an MRI contrast enhancement agent for liver tumors).

In order to engineer these multifunctional LNAs for theranostic applications, the interactions between nanoparticles and lipids must be better understood. This research sought to explore the formation, design, structures, characteristics, and functions of LNAs. To achieve this goal, different types of LNAs were formed, specifically magnetoliposomes, bilayer decorated LNAs (DLNAs), and lipid-coated magnetic nanoparticles (LMNPs).

A fluorescent probe was embedded in the lipid bilayer of magnetoliposomes allowing the local temperature and membrane fluidity to be observed. When subjected to an electromagnetic field that heated the encapsulated iron oxide nanoparticles encapsulated in the lipid bilayer, the local temperature and membrane fluidity could be observed.

DLNAs were encapsulated with different sized nanoparticles and concentrations in order to observe the effect of the bilayer nanoparticles on the lipid bilayer’s phase behavior and leakage. Two different sized nanoparticles were used, a 2 nm gold nanoparticle (GNP) much smaller than the thickness of the bilayer and a 4 nm GNP near the thickness of the lipid bilayer. The 2 nm GNPs were shown to affect the lipid bilayer differently than the 4 nm GNP. Specifically, the two nanoparticles altered the phase behavior and leakage differently in a temperature dependent fashion, demonstrating that embedded nanoparticle size can be used induce or inhibit bilayer leakage.

A dual solvent exchange method was used to control the lipid surface composition of an iron oxide nanoparticle with a cationic lipid and a polyethylene glycol (PEG) lipid to produce lipid coated magnetic nanoparticles (LMNPs). PEG is well known for its ability to enhance the pharmacokinetics of nanostructures by preventing uptake by the immune system. By controlling the lipid surface composition, the surface charge and PEG conformation can be controlled which allowed the LMNPs to be used as an MRI contrast agent and a delivery system for siRNA that could be triggered with temperature.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.