An analysis of the thermal decomposition reactions of organic electrolytes used in lithium-ion batteries

Christopher Lawrence Campion, University of Rhode Island

This dissertation was scanned from microfilm. To report any image quality issues, please contact the URI library at digitalcommons-group@uri.edu as we may be able to fix the problem. The copyright in this dissertation belongs to the author.

Abstract

The thermal decomposition of LiPF6 in solution with carbonate solvents has been investigated. The thermal dissociation of LiPF6 into LiF and PF5 is known. In solution, PF 5 reacts with carbonates to form a variety of decomposition products including: carbon dioxide (CO2), ethers (R2O), alkylfluorides (RF), phosphorus oxyfluoride (OPF3), and fluorophosphates (OPF 2OR, OPF(OR)2), assignment of structure is supported by Nuclear Magnetic Resonance (NMR) spectroscopy and Gas Chromatography with Mass Selective Detection (GC-MS). Similar decomposition products are observed during the thermal decomposition of carbonate solutions of LiPF6. Since solutions of LiPF6 are widely used as Li-ion battery electrolytes, there is interest among battery manufacturers and researchers as to the thermal decomposition of this electrolyte. Here we describe the structural and mechanistic investigations of the thermal decomposition of lithium-ion battery electrolytes. The electrolyte undergoes autocatalytic decomposition reactions at moderately elevated temperatures (80-100°C) to produce a large number of decomposition products. Results indicate that the thermal decomposition reactions are suppressed by the electrode, particularly the cathode, or intended stabilizing additives.