Date of Award

1998

Degree Type

Dissertation

Degree Name

Doctor of Philosophy in Oceanography

Department

Oceanography

First Advisor

D. Randolph Watts

Abstract

Geostrophic relative velocity profiles from a hydrographic section obtained in August 1993 were referenced using POGO floats and acoustic doppler current profiler measurements, yielding a calculated absolute transport for the North Atlantic Current (NAC) of 112 x 106 m3 s-1. Based on a through study of sources of error, the transport was determined with unprecedented accuracy, ± 23 x 106 m3 s-1. This transport includes a portion of the northward transport of the Mann Eddy, a large permanent eddy adjacent to the NAC, as is customary to this location since the two northward flows are generally indistinguishable. Historical hydrography was used to demonstrate that the variation of vertical structure in the Newfoundland Basin is dominated by a single lowest mode. Using moored current meter and inverted echo sounder measurements, full-water-column profiles of temperature, and specific volume anomaly, ∂, were obtained daily on a section across the NAC along the WOCE ACM6 transect near 42.5°N. Profiles of ∂, integrated vertically, result in profiles of geopotential height anomaly, ∆φ; horizontal gradients of ∆φ yield relative velocity profiles, which were absolutely referenced using deep current meters and bottom pressure sensors. These methods provide timeseries of temperature and absolute velocity sections spanning the NAC. The mean absolute transport of the NAC, spanning August 1993 through February 1995, was 146 ± 14 x 106 m3 s-1. The barotropic component of the transport (defined as Vbot x H) exceeded 33% of the total transport. Temperature and absolute velocity sections were used to determine the mean stream-coordinates structure of the NAC, which is narrower and stronger than the Eulerian structure. Peak speeds exceed 80 cm s-1 and bottom velocities surpass 10 cm s-1. The mean transport in stream-coordinates is 131 ± 14 x 106 m3 s-1. The decrease in transport when calculated in stream-coordinates results from smoothing of the Mann Eddy. The throughput transport of the NAC (removing the contribution of the Mann Eddy) is estimated to be 90 x 106 m3 s-1. Using these measurements and other published results, a scheme for the overall circulation and transport in the Newfoundland Basin is presented.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.