Date of Award

2020

Degree Type

Dissertation

Degree Name

Doctor of Philosophy in Chemistry

Specialization

Organic Chemistry

Department

Chemistry

First Advisor

Matthew Kiesewetter

Abstract

Organocatalysis for Ring-Opening Polymerization (ROP) has come a long way in recent developments to afford precisely tailored and highly adorned biodegradable polyesters. A remarkable milestone of the organocatalysts occurred in 2005 with the advent of dual H-bonding catalysts that produce superior reaction control and molecular weight distributions (Mw/Mn), which is ideal for material applications. However, these organocatalysts do not show the capability in faster reaction times which is limiting the feasibility for industrial implementation.

The polymerization of cyclic esters by (thio)urea/base cocatalyst has proved to be effective and controlled. One method of devising improved catalyst systems is through mechanistic investigations. It has shown that ROP can proceed via one of two mechanisms: Neutral H-bonding mechanism and (thio)imidate mediated mechanism. It has been found that (thio)imidate mechanism is preferred reaction conditions such as polar solvents, high temperature, high monomer concentration, presence of strong electron-withdrawing groups on the H-bond donor, and strong bases which resulted in effective ROP kinetics and precisely tailored polymers.

The synthetic addition of one or more (thio)urea H-bond donating arms to the parent (thio)urea has been shown to substantially increase the activity of (thio)urea H-bond donors. A series of conformationally flexible bis(thio)urea H-bond donors plus base cocatalyst were applied to understand the structure-function relationship of the multi H- bonding (thio)ureas in the ring opening polymerization of lactones. The rate of the ROP displays a strong dependence upon the length and identity of the tether, where a circa five methylene-unit long tether exhibits the fastest ROP of δ-valerolactone (VL) and ε- caprolactone (CL), which could be accelerating reaction rates from days to seconds, and remains active at low catalyst loadings under solvent-free conditions.

An extensive kinetic study was carried out with ROP of VL employing multi H-bonding urea catalysts in polar solvents. It has revealed that multiple urea moieties in the catalysts facilitate activation of several monomers, which resulted in higher-order kinetics in monomer; hence, higher initial rates in ROP reactions were observed. It is also found that the polymer architecture could be modified in copolymerization due to higher-order kinetics in VL with multi H-bonding urea catalysts in polar solvents.

For the first time, organocatalytic ring-opening polymerization (ROP) of thionomacrolactones was conducted. The ROP of less strained (thiono)macrolactones showed entropic driving force for the reaction with minimal or negligible contribution from enthalpy for the ROP yet, retain the characteristics of living polymerization even at elevated temperatures. The copolymerization of thionomacrolactones and macrolactones showed altered material properties compared to its homopoly(thiono)lactones.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.