Date of Award
2019
Degree Type
Dissertation
Degree Name
Doctor of Philosophy in Computer Science
Department
Computer Science and Statistics
First Advisor
Lutz Hamel
Abstract
This study aimed both to apply centered kernel target alignment (CKTA) to inductive logic programming (ILP) in several different ways and to apply a complete refinement operator in a practical setting. A new genetic algorithm (GA) results from the research, utilizing a complete, locally finite refinement operator and also incorporating CKTA both as a fitness score and as a means for the promotion of diversity. As a fitness score, CKTA can either be used standalone or as a contributor to a hybrid score which utilizes the accuracy (weighted or normal) of the learned logic hypothesis as well. In terms of diversity promotion, CKTA is used for incest avoidance and as a means for creating diverse ensembles. This is the first study to employ CKTA for diversity promotion of any kind. It is also the first to apply CKTA to ILP. The kernels in this study are created via dynamic propositionalization, where the features are learned jointly with the kernel to be used for classification via a genetic algorithm. In this sense, genetic kernels for ILP are created. The results show that the methods proposed herein are promising, encouraging future work. It is worth noting that the applications of CKTA in this study are not specific to ILP. They can also be used more generally in any other domain using kernels.
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Recommended Citation
Ott, Benjamin H., "APPLICATIONS OF CENTERED KERNEL TARGET ALIGNMENT IN INDUCTIVE LOGIC PROGRAMMING" (2019). Open Access Dissertations. Paper 1090.
https://digitalcommons.uri.edu/oa_diss/1090