Document Type

Article

Date of Original Version

10-2017

Abstract

Coastal ecosystems are subjected to global and local environmental stressors, including increased atmospheric carbon dioxide (CO2) (and subsequent ocean acidification) and nutrient loading. Here, we tested how two common macroalgal species in the Northwest Atlantic (Ulva spp. and Fucus vesiculosus Linneaus) respond to the combination of increased CO2 and nutrient loading. We utilized two levels of pCO2 with two levels of nutrients in a full factorial design, testing the growth rates and tissue quality of Ulva and Fucus grown for 21 days in monoculture and biculture. We found that the opportunistic, fast-growing Ulva exhibited increased growth rates under high pCO2 and high nutrients, with growth rates increasing three-fold above Ulva grown in ambient pCO2 and ambient nutrients. By contrast, Fucus growth rates were not impacted by either environmental factor. Both species exhibited a decline in carbon to nitrogen ratios (C:N) with elevated nutrients, but pCO2 concentration did not alter tissue quality in either species. Species grown in biculture exhibited similar growth rates to those in monoculture conditions, but Fucus C:N increased significantly when grown with Ulva, indicating an effect of the presence of Ulva on Fucus. Our results suggest that the combination of ocean acidification and nutrients will enhance abundance of opportunistic algal species in coastal systems and will likely drive macroalgal community shifts, based on species-specific responses to future conditions.

Share

COinS