Document Type
Article
Date of Original Version
2-28-2020
Department
Natural Resources Science
Abstract
Salt marshes provide a bulwark against sea-level rise (SLR), an interface between aquatic and terrestrial habitats, important nursery grounds for many species, a buffer against extreme storm impacts, and vast blue carbon repositories. However, salt marshes are at risk of loss from a variety of stressors such as SLR, nutrient enrichment, sediment deficits, herbivory, and anthropogenic disturbances. Determining the dynamics of salt marsh change with remote sensing requires high temporal resolution due to the spectral variability caused by disturbance, tides, and seasonality. Time series analysis of salt marshes can broaden our understanding of these changing environments. This study analyzed aboveground green biomass (AGB) in seven mid-Atlantic Hydrological Unit Code 8 (HUC-8) watersheds. The study revealed that the Eastern Lower Delmarva watershed had the highest average loss and the largest net reduction in salt marsh AGB from 1999–2018. The study developed a method that used Google Earth Engine (GEE) enabled time series of the Landsat archive for regional analysis of salt marsh change and identified at-risk watersheds and salt marshes providing insight into the resilience and management of these ecosystems. The time series were filtered by cloud cover and the Tidal Marsh Inundation Index (TMII). The combination of GEE enabled Landsat time series, and TMII filtering demonstrated a promising method for historic assessment and continued monitoring of salt marsh dynamics.
Citation/Publisher Attribution
Campbell AD, Wang Y (2020) Salt marsh monitoring along the mid-Atlantic coast by Google Earth Engine enabled time series. PLOS ONE 15(2): e0229605.https://doi.org/10.1371/journal.pone.0229605
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.