Document Type

Article

Date of Original Version

2020

Abstract

Ceramic water filters (CWFs) are point-of-use drinking water treatment systems that are manufactured and used in under-served communities around the world. The clayey material (CM) used to manufacture CWFs is a locally sourced mixture of clay, sand, slit and amorphous material (usually dug near the CWF factory). CM varies in composition and purity depending on the geographical location and geological setting. In this study, a set of 13 CM samples collected from around the world were analyzed using grain size analysis, as well as liquid and plastic limit tests. Mineralogical composition was determined using X-ray diffraction. A selection of three CM samples (Guatemala, Canada, and Guinea Bissau) with a range of compositions were used to study biofilm growth on CM before and after firing. Biofilm coverage was studied on CM (before firing) and CWF material (after firing) using Pseudomonas fluorescens Migula. The average biofilm coverages for Guatemala, Canada, and Guinea Bissau CM were 20.03 ± 2.80%, 19.28 ± 0.91%, and 9.88 ± 4.02%, respectively. The average biofilm formation coverages for Guatemala, Canada, and Guinea Bissau CWF were 13.08 ± 1.74%, 10.36 ± 3.41%, and 8.66 ± 0.13%, respectively. The results presented here suggest that CM can be manipulated to manufacture better performing CWFs by engineering the soil characteristics, such as grain size, liquid and plastic limits, and mineralogy. This could improve the durability and biofilm resistance of CWFs.

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Share

COinS