Document Type


Date of Original Version



Biological Sciences


Macroalgae use flexibility and reconfiguration, i.e. the alteration of shape, size and orientation as water velocity increases, to reduce the hydrodynamic forces imposed in the wave-swept rocky intertidal zone. Quantifying the effects of flexibility on hydrodynamic performance is difficult, however, because the mechanisms of reconfiguration vary with water velocity and the relationship between algal solid mechanics and hydrodynamic performance is poorly understood. In this study, the hydrodynamic performance, morphology and solid mechanics of 10 rocky shore macroalgal species were quantified to evaluate the influences of flexibility and morphology on reconfiguration. Hydrodynamic performance was measured in a flume by direct measurement of changes in size and shape during reconfiguration across a wide range of velocities, material stiffness was quantified with standard materials testing, and structural properties were calculated from material and morphological data. Hydrodynamic parameters varied significantly among species, indicating variation in the magnitude of reconfiguration and the velocities required for full reconfiguration. Structural properties also varied among species, and were correlated with hydrodynamic performance in some instances. The relationship between hydrodynamic and structural properties is velocity dependent, such that flexibility influences different aspects of reconfiguration at low and high velocities. Groups are identifiable among species based on hydrodynamic and structural properties, suggesting that these properties are useful for addressing functional-form hypotheses and the effects of hydrodynamic disturbance on macroalgal communities.