The effects of environmental history and thermal stress on coral physiology and immunity

Document Type

Article

Date of Original Version

3-1-2018

Abstract

Rising ocean temperatures can induce the breakdown of the symbiosis between reef building corals and Symbiodinium in the phenomenon known as coral bleaching. Environmental history may, however, influence the response of corals to stress and affect bleaching outcomes. A suite of physiological and immunological traits was evaluated to test the effect of environmental history (low vs. high variable pCO2) on the response of the reef coral Montipora capitata to elevated temperature (24.5 °C vs. thermal ramping to 30.5 °C). Heating reduced maximum photochemical efficiency (Fv/Fm) and chlorophyll a but increased tissue melanin in corals relative to the ambient treatment, indicating a role of the melanin synthesis pathway in the early stages of thermal stress. However, interactions of environmental history and temperature treatment were not observed. Rather, parallel reaction norms were the primary response pattern documented across the two temperature treatments with respect to reef environmental history. Corals with a history of greater pCO2 variability had higher constitutive antioxidative and immune activity (i.e., catalase, superoxide dismutase, prophenoloxidase) and Fv/Fm, but lower melanin and chlorophyll a, relative to corals with a history of lower pCO2 variability. This suggests that reef environments with high magnitude pCO2 variability promote greater antioxidant and immune activity in resident corals. These results demonstrate coral physiology and immunity reflect environmental attributes that vary over short distances, and that these differences may buffer the magnitude of thermal stress effects on coral phenotypes.

Publication Title, e.g., Journal

Marine Biology

Volume

165

Issue

3

Share

COinS