Document Type
Article
Date of Original Version
2019
Department
Biological Sciences
Abstract
Corals comprise a biomineralizing cnidarian, dinoflagellate algal symbionts, and associated microbiome of prokaryotes and viruses. Ongoing efforts to conserve coral reefs by identifying the major stress response pathways and thereby laying the foundation to select resistant genotypes rely on a robust genomic foundation. Here we generated and analyzed a high quality long-read based ~886 Mbp nuclear genome assembly and transcriptome data from the dominant rice coral, Montipora capitata from Hawai’i. Our work provides insights into the architecture of coral genomes and shows how they differ in size and gene inventory, putatively due to population size variation. We describe a recent example of foreign gene acquisition via a bacterial gene transfer agent and illustrate the major pathways of stress response that can be used to predict regulatory components of the transcriptional networks in M. capitata. These genomic resources provide insights into the adaptive potential of these sessile, long-lived species in both natural and human influenced environments and facilitate functional and population genomic studies aimed at Hawaiian reef restoration and conservation.
Citation/Publisher Attribution
Shumaker, A., Putnam, H.M., Qiu, H. et al. Genome analysis of the rice coral Montipora capitata. Sci Rep 9, 2571 (2019). https://doi.org/10.1038/s41598-019-39274-3
Available at: https://doi.org/10.1038/s41598-019-39274-3
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.