Date of Award
2016
Degree Type
Thesis
Degree Name
Master of Science in Mechanical Engineering and Applied Mechanics
Department
Mechanical, Industrial and Systems Engineering
First Advisor
Arun Shukla
Abstract
This research examines the fabrication and electro-mechanical properties of functionally graded graphene-nylon segregated composites. A novel production technique was expanded upon to produce segregated nylon-pellet and graphene nanocomposites with low percolation threshold for electrical conductivity. This particle templating procedure effectively disperses graphene within the nylon pellet matrix and is hot-press melted into three-inch diameter discs. While ideally structured for electrical transport, these specimens are mechanically weak along the polymer grain boundaries. To enhance the mechanical properties, a double-rotary shearing step was added to increase mechanical strength without significant sacrifice to electrical properties, signifying the shearing method is a viable trade-off fabrication approach. Lastly, a production technique for fabricating graphene-nylon textiles with conductive properties was investigated. Graphene-coated nylon yarn in a polymer matrix proved to have high electrical conductivity.
Chapter one is an introduction to graphene and related studies and applications. The nylon-pellet graphene material fabrication and testing are explored in chapters two and three respectively. Chapter four addresses the nylon-yarn and graphene composites. Electrical conductivity was measured using a high resolution four-point probe method. Three-point bend and tensile testing experiments were used to evaluate mechanical properties.
Recommended Citation
McCarthy, Kimberly I., "Electrical Response of Functionally Graded Graphene-Nylon Segregated Composites Under Quasi-Static Loading" (2016). Open Access Master's Theses. Paper 940.
https://digitalcommons.uri.edu/theses/940
Terms of Use
All rights reserved under copyright.