Date of Award

2015

Degree Type

Thesis

Degree Name

Master of Science in Physics

Department

Physics

First Advisor

David R. Heskett

Abstract

The goal of this thesis is to study the behavior of ion-induced defects at the Y point on the Ni (110) surface at elevated temperatures. The electronic structure of the surface is examined using inverse photoemission spectroscopy (IPES), and the geometric structure is observed using low energy electron diffraction (LEED). These measurements lead to a better understanding of the surface properties.

The clean Ni (110) surface exhibits a peak ~ 2.6 eV above the Fermi level, indicating an unoccupied surface state near the Y point of the surface Brillouin zone (SBZ). Defects are induced by low energy ion bombardment at various temperatures, which result in a decrease of the peak intensity. The surface state eventually disappears when bombarded for longer times. We also observed that the surface heals faster when the crystal is being simultaneously sputtered and annealed at higher versus lower temperature. Finally the data for annealing while sputtering versus annealing after sputtering does not seem to exhibit much difference.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.