Date of Award

2014

Degree Type

Thesis

Degree Name

Master of Science in Oceanography

Specialization

Biological Oceanography

Department

Oceanography

First Advisor

Susanne Menden-Deuer

Abstract

To assess the importance of herbivory by heterotrophic protists in relation to mixed-layer depth prior to the spring phytoplankton bloom, we measured phytoplankton growth and heterotrophic-protist grazing rates during the March/April 2012 EuroBasin Deep Convection cruise in the subpolar North Atlantic. We performed 15 dilution experiments during 2-4 visits at one shelf (160 m) and two deep (~1300 m) stations. Of the two deep stations, one had a mean mixed-layer depth of 476 m, whereas the other was stratified (46 m). Euphotic depth averaged ~70 m at both stations. Initial chlorophyll-a varied from 0.2 to 1.9 μg L-1 at the deep mixed layer station and from 0.5 to 1.0 μg L-1 at the stratified station. In 80 % of the experiments, growth rates exceeded grazing mortality rates, regardless of mixed layer depth. Large mixed layer depth coincided with phytoplankton growth and grazing mortality rates that varied over a similar range from ≤0 to 0.6 d-1, and to an average grazing-impact representing 50% of primary production (PP). At the stratified station, phytoplankton growth rates varied from 0.18 to 0.41 d-1, grazing mortality rates varied from 0.11 to 0.34 d-1, and a temporal shift from a positive to a negative balance between growth and grazing rates caused the proportion of PP consumed to increase from 60% to 180%. Variations in in situ chlorophyll-a could not be explained where the mixed layer was deep, whereas at the stratified station the balance between rate estimates of phytoplankton growth and grazing mortality rates explained 98% of measured changes in chlorophyll-a. These results suggest a difference in the dominant surface loss process at the two stations: grazing at the stratified station vs. potential sinking aided by vertical mixing where mixed layer was deep.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.