Date of Award
2014
Degree Type
Thesis
Degree Name
Master of Science in Oceanography
Specialization
Physical Oceanography
Department
Oceanography
First Advisor
Christopher Roman
Abstract
Profiling the water column from a moving vessel places significant limitations on the achievable spatial resolution of the data collected. Current solutions such as underway CTDs and undulating towed bodies are limited by vessel speed and operational water depths. With an increased focus on submesoscale processes (e.g., stirring, mixing, regulation of thermocline structure, chemical distributions along isopycnals and resolution of hydrothermal plumes), there is a growing need to collect profiles with high vertical and horizontal resolution. A new autonomous profiling vehicle has been developed to address this need. The autonomous wire flying profiling vehicle slides up and down a towed wire in controlled manner using the lift generated from actuated wing foils. Using a depth and velocity controller, the vehicle is capable of maintaining prescribed flight paths over a range of ship speeds and tow depths. The vehicle has achieved glide slopes (ratio of vertical to horizontal speeds) up to 2.5 for tow cables angles between vertical and 45 degrees during field testing. This results in a sample path with more horizontal resolution than otherwise achievable with other underway or undulating systems. This paper presents a summary of the vehicle’s capabilities along with field test data from a test cruise to the New England Shelf Break.
Recommended Citation
Logan, Luke Andrew, "PERFORMANCE ANALYSIS OF AN UNDERWATER WIRE FLYING PROFILING VEHICLE" (2014). Open Access Master's Theses. Paper 349.
https://digitalcommons.uri.edu/theses/349
Terms of Use
All rights reserved under copyright.