Date of Award
2020
Degree Type
Thesis
Degree Name
Master of Science in Systems Engineering
Department
Mechanical, Industrial and Systems Engineering
First Advisor
Gretchen A. Macht
Abstract
To reduce the threshold of EV adoption, the electric vehicle supply equipment (EVSE) infrastructure needs to fit the EV systems to its users to satisfy their expectations. There needs to be a reflection of user behavior variability in the EVSE infrastructure to improve its functionality. Individual users’ charging actions, over time, construct a charging behavioral pattern that distinguishes the users from one another. This research analyses the EV users’ unique behavioral charging patterns. Therefore, profiles of users’ charging actions are clustered to investigate the unique behavioral patterns. An unsupervised clustering algorithm (i.e., K-means) is implemented through three distance metrics (i.e., Hamming, Wasserstein, and Manhattan) to classify the Rhode Island public charging stations’ frequent users. Frequent users of these stations were established using the Pareto Principle, in which 608 users (20% of users) contributed to 89% of charging events. The results indicated five clusters through the Wasserstein distance metric, which proposed different EV charging behavior patterns. The five achieved clusters represent: 39% of anxious or opportunistic users (1); 27% of users with consistent charging regardless of their EVs state of charge (2); while 21% of users having sporadic charging behavior revealing no pattern (3); and then approximately 5% of users with procrastination tendencies with only charging when practically out of charge (4) and 8% of users who experience that rush toward running out of charge (procrastinators) but exhibit some opportunistic early charging (5). Knowing these users’ unique behaviors helps both public and private stakeholders target EV market growth through user-centric EVSE location placement.
Recommended Citation
Khaleghikarahrodi, Mehrsa, "PATTERNS, OR NO PATTERNS, THAT IS THE QUESTION" (2020). Open Access Master's Theses. Paper 1900.
https://digitalcommons.uri.edu/theses/1900
Terms of Use
All rights reserved under copyright.