Date of Award

2019

Degree Type

Thesis

Degree Name

Master of Science in Electrical Engineering (MSEE)

Department

Electrical, Computer, and Biomedical Engineering

First Advisor

Frederick J. Vetter

Abstract

There are many new developments in technology in the last decades. Even though the world is moving towards more autonomy, the human in the loop control of technology is still crucial. To improve efficiency and advance the technology further, there are new ways of human to machine interfaces (HMI) being developed: for example, eye control, voice control, brain control interface (BCI), gesture control, etc. All of these new paradigms of control face some common issues such as adoption, learning curve, and reliability. The goal for this project is to demonstrate a new state machine approach for gesture classification and demonstrate a use case for gesture classification.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.