Date of Award
2013
Degree Type
Thesis
Degree Name
Master of Science in Mechanical Engineering and Applied Mechanics
Department
Mechanical, Industrial and Systems Engineering
First Advisor
Keunhan Park
Abstract
The work presented in this study analyses the theoretical modeling and experimentation of laser-assisted heating of plasmonic nanofluids (PNFs) in a microchannel for accurate, efficient, and ultra-fast heating of a microdroplet. Suspended plasmonic nanoparticles exhibit strong light absorption and scattering upon the excitation of localized surface plasmons (LSPs), resulting in intense and rapid photothermal heating. Several multiple stepped computational models were utilized to theoretically characterize and verify the laser-assisted heating behavior of gold nanoshells (GNS) and gold nanorod (GNR) plasmonic nanofluid droplets in a microchannel. From the experimental investigation, a full range of controllable steady-state temperatures, room temperature to 100°C, are confirmed to be achievable for the 780nm-tuned plasmonic nanofluid. Droplet fluid heating is verified to occur as a result of LSP excitation, in time scales of a second, and to be repeatable over many cycles. Additionally, the significance and effects of parameters in the process, such as nanoparticle structure, volumetric concentration, microchannel depth, and laser power density are established. The obtained results in this research may be integrated into other existing microfluidic technologies and biological techniques, such as the polymerase chain reaction, where accurate and ultra-fast heating of microdroplets in a microchannel can greatly improve efficiency.
Recommended Citation
Walsh, Timothy, "LASER-ASSISTED HEATING OF A PLASMONIC NANOFLUID IN A MICROCHANNEL" (2013). Open Access Master's Theses. Paper 155.
https://digitalcommons.uri.edu/theses/155
Terms of Use
All rights reserved under copyright.