Date of Award

2013

Degree Type

Thesis

Degree Name

Master of Science in Mechanical Engineering and Applied Mechanics

Department

Mechanical, Industrial and Systems Engineering

First Advisor

Mohammad Faghri

Abstract

This study presents the development of a 3-fluid microfluidic device for the application in immunoassays. The test uses a microfluidic valve in order to sequentially load the reagents autonomously onto the detection area after adding the sample. The development of the multi-fluid circuit allows the application of an enzyme-linked assay in a lateral flow device as to provide with an improved sensitivity compared to strip tests available on the market. For fabricating the channels of the device, a wax printer was used. The layers were attached using double-sided tape. In order to advance the reliability of the device, new fabrication method were applied in this study. After optimizing parameters such as reagent concentrations, reagent volumes and the dimensions of the device, a calibration curve using rabbit IgG was created. The limit of detection was then obtained. Furthermore a housing for the device was developed. By compressing the microfluidic valve, an improved reliability of the valves was obtained. For the goal of an autonomously running device, a reagent storage was incorporated into the housing. The reagent storage provides with the ability to operate the test without additional interference after adding the sample. Based on the results of this study, an improved lateral flow test was obtained. The developed 3-fluid device using an enzyme-linked assay is able to detect rabbit IgG down to a concentration of 4.7 ng/ml. This results in a limit of detection better than in a conventional ELISA conducted on microtiter-plates (8.6 ng/ml). Advantages such as lower reagent volumes, lower time to result and biodegradability of materials used during the development of this device were achieved.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.