A dynamic population model to investigate effects of climate and climate-independent factors on the lifecycle of Amblyomma americanum (Acari: Ixodidae)
Document Type
Article
Date of Original Version
1-1-2016
Abstract
The lone star tick, Amblyomma americanum, is a disease vector of significance for human and animal health throughout much of the eastern United States. To model the potential effects of climate change on this tick, a better understanding is needed of the relative roles of temperature-dependent and temperature-independent (day-length-dependent behavioral or morphogenetic diapause) processes acting on the tick lifecycle. In this study, we explored the roles of these processes by simulating seasonal activity patterns using models with sitespecific temperature and day-length-dependent processes. We first modeled the transitions from engorged larvae to feeding nymphs, engorged nymphs to feeding adults, and engorged adult females to feeding larvae. The simulated seasonal patterns were compared against field observations at three locations in United States. Simulations suggested that 1) during the larva-to-nymph transition, some larvae undergo no diapause while others undergo morphogenetic diapause of engorged larvae; 2) molted adults undergo behavioral diapause during the transition from nymph-to-adult; and 3) there is no diapause during the adult-to-larva transition. A model constructed to simulate the full lifecycle of A. americanum successfully predicted observed tick activity at the three U.S. study locations. Some differences between observed and simulated seasonality patterns were observed, however, identifying the need for research to refine some model parameters. In simulations run using temperature data for Montreal, deterministic die-out of A. americanum populations did not occur, suggesting the possibility that current climate in parts of southern Canada is suitable for survival and reproduction of this tick.
Publication Title, e.g., Journal
Journal of Medical Entomology
Volume
53
Issue
1
Citation/Publisher Attribution
Ludwig, Antoinette, Howard S. Ginsberg, Graham J. Hickling, and Nicholas H. Ogden. "A dynamic population model to investigate effects of climate and climate-independent factors on the lifecycle of Amblyomma americanum (Acari: Ixodidae)." Journal of Medical Entomology 53, 1 (2016). doi: 10.1093/jme/tjv150.