Document Type
Article
Date of Original Version
4-26-2018
Abstract
We consider a lattice gas in spaces of dimensionality D = 1; 2; 3. The particles are subject to a hardcore exclusion interaction and an attractive pair interaction that satisfies Gauss' law as do Newtonian gravity in D = 3, a logarithmic potential in D = 2, and a distance-independent force in D = 1. Under mild additional assumptions regarding symmetry and fluctuations we investigate equilibrium states of self-gravitating material clusters, in particular radial density profiles for closed and open systems. We present exact analytic results in several instances and high-precision numerical data in others. The density profile of a cluster with finite mass is found to exhibit exponential decay in D = 1 and power-law decay in D = 2 with temperature-dependent exponents in both cases. In D = 2 the gas evaporates in a continuous transition at a nonzero critical temperature. We describe clusters of in_nite mass in D = 3 with a density pro_le consisting of three layers (core, shell, halo) and an algebraic large-distance asymptotic decay. In D = 3 a cluster of finite mass can be stabilized at T > 0 via con_nement to a sphere of finite radius. In some parameter regime, the gas thus enclosed undergoes a discontinuous transition between distinct density profiles. For the free energy needed to identify the equilibrium state we introduce a construction of gravitational self-energy that works in all D for the lattice gas. The decay rate of the density profile of an open cluster is shown to transform via a stretched exponential for 1 < D < 2 whereas it crosses over from one power-law at intermediate distances to a different power-law at larger distances for 2 < D < 3.
Citation/Publisher Attribution
Bakhti, B., Boukari, D., Karbach, M., Maass, P., & Müller, G. (2018). Density profiles of a self-gravitating lattice gas in one, two, and three dimensions. Phys. Rev. E, 97(4), 042131. doi: 10.1103/PhysRevE.97.042131
Available: https://doi.org/10.1103/PhysRevE.97.042131
Author Manuscript
This is a pre-publication author manuscript of the final, published article.
Terms of Use
This article is made available under the terms and conditions applicable
towards Open Access Policy Articles, as set forth in our Terms of Use.