Document Type
Article
Date of Original Version
1-2014
Abstract
The equilibrium statistical mechanics of one-dimensional lattice gases with interactions of arbitrary range and shape between first-neighbor atoms is solved exactly on the basis of statistically interacting vacancy particles. Two sets of vacancy particles are considered. In one set all vacancies are of one-cell size. In the other set the sizes of vacancy particles match the separation between atoms. Explicit expressions are obtained for the Gibbs free energy and the distribution of spaces between atoms at thermal equilibrium. Applications to various types of interaction potentials are discussed, including long-range potentials that give rise to phase transitions. Extensions to hard rod systems are straightforward and are shown to agree with existing results for lattice models and their continuum limits.
Citation/Publisher Attribution
Bakthi, B., Karbach, M., Maass, P., Mokim, M., & Müller, G. (2014). Statistically interacting vacancy particles. Physical Review E, 89 (012137), 1-9. doi: 10.1103/PhysRevE.89.012137
Available at: http://dx.doi.org/10.1103/PhysRevE.89.012137
Author Manuscript
This is a pre-publication author manuscript of the final, published article.
Terms of Use
This article is made available under the terms and conditions applicable
towards Open Access Policy Articles, as set forth in our Terms of Use.