Document Type
Article
Date of Original Version
6-15-1987
Abstract
In stability analysis of nonlinear systems, the character of the eigenvalues of the Jacobian matrix (i.e., whether the real part is positive, negative, or zero) is needed, while the actual value of the eigenvalue is not required. We present a simple algebraic procedure, based on the Routh-Hurwitz criterion, for determining the character of the eigenvalues without the need for evaluating the eigenvalues explicitly. This procedure is illustrated for a system of nonlinear ordinary differential equations we have studied previously. This procedure is simple enough to be used in computer code, and, more importantly, makes the analysis possible even for those cases where the secular equation cannot be solved.
Citation/Publisher Attribution
DeJesus, E. X., & Kaufman, C. (1987). Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations. Physical Review A, 35(12), 528-5290. doi: 10.1103/PhysRevA.35.5288
Available at: http://dx.doi.org/10.1103/PhysRevA.35.5288
Terms of Use
All rights reserved under copyright.
Publisher Statement
©1987 The American Physical Society