Document Type
Article
Date of Original Version
1975
Abstract
A scaling form for the logarithm of the partition function suitable for a zero-temperature critical point is obtained and found to hold for the spherical model in less than two dimensions and the classical n-component Heisenberg linear chain. Nevertheless, several cases are found where the critical-exponent relations involving the specific heat fail. These anomalous cases do not imply a breakdown of the scaling implicit in the basic formulation of renormalization-group theory.
Citation/Publisher Attribution
Baker, Jr., G. A., & Bonner, J. C. (1975). Scaling behavior at zero-temperature critical points. Phys. Rev. B, 12(9), 3741-3744. doi: 10.1103/PhysRevB.12.3741
Available at: http://dx.doi.org/10.1103/PhysRevB.12.3741
Terms of Use
All rights reserved under copyright.