Document Type

Article

Date of Original Version

4-15-1987

Abstract

We have performed a variety of numerical studies on the general bilinear‐biquadratic spin‐1 Hamiltonian H/J=∑ N i=1[S i S i+1 −β(S i S i+1)2], over the range 0≤β≤∞. The model is Bethe Ansatz integrable at the special point β=1, where the spectrum is gapless, but is otherwise believed to be nonintegrable. Affleck has predicted that an excitation gap opens up linearly in the vicinity of β=1. Our studies involving spectral excitations (dispersion spectra), scaled‐gap, and finite‐size scaling calculations are not consistent with the Affleck prediction. The situation appears complex, with novel crossover effects occurring in both regimes, ββ>1, complicating the analysis.

Publisher Statement

Copyright 1987 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.

The following article appeared in Journal of Applied Physics and may be found at http://dx.doi.org/10.1063/1.338400.

Share

COinS