Document Type
Article
Date of Original Version
11-2013
Abstract
The effects of electric field and ultrasonication on the deposition and alignment of single-walled carbon nanotubes (SWCNTs) across a 10 μm electrode gap have been studied. It was found that a frequency of ~1 MHz of the applied field yields the largest current independent of the magnitude of the voltage or the ultrasonication time of the sample. Increasing the ultrasonication time of a SWCNT solution changes the I-V characteristics of the deposited nanotubes from linear to nonlinear for all the voltages and frequencies of the applied field. Even in the absence of an electric field, SWCNTs bridged the electrode gap up to a critical sonication time which depends on the concentration of nanotubes in the solution.
Citation/Publisher Attribution
Ammu, S. and Heskett, D. (2013) The Role of Electric Field and Ultrasonication in the Deposition and Alignment of Single-Walled Carbon Nanotube Networks Using Dielectrophoresis. World Journal of Condensed Matter Physics, 3, 159-163. doi: 10.4236/wjcmp.2013.34025
Available at: http://dx.doi.org/10.4236/wjcmp.2013.34025
Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.