Using stable isotopes to monitor anthropogenic nitrogen inputs to estuaries

Document Type


Date of Original Version



Use of stable nitrogen isotope ratios is one method that has been proposed to indicate anthropogenic nutrient enrichment in estuarine systems. However, the role of stable isotopes as a tool in long-term ecosystem monitoring has not been fully developed. Resident producer and consumer species were collected from marshes dominated by Spartina alterniflora and subject to a range of anthropogenic impacts in Cape Cod, Massachusetts, and in Great South Bay and Jamaica Bay, New York. Tissue isotope ratios of Spartina alterniflora, Ulva lactuca, Fundulus heteroclitus, and Geukensia demissa were analyzed in order to determine which organisms are the most sensitive indicators of changes in anthropogenic nitrogen source and loading. Power analysis was used to determine the sample sizes necessary to detect change in nutrient source using the species sampled. Relationships between the δ15N values of the species sampled and watershed population density and residential development were evaluated. Population density was a better indicator of anthropogenic nitrogen impact than residential development, since most anthropogenic nitrogen in the study marshes was derived from wastewater. Consumer species demonstrated lower within-site variability than producer species and would therefore require smaller sample sizes to detect changes in nitrogen source and loading. © 2008 by the Ecological Society of America.

Publication Title, e.g., Journal

Ecological Applications