Resource selection and wintering phenology of White-winged Scoters in southern New England: Implications for offshore wind energy development

Document Type


Date of Original Version



Southern New England provides key wintering habitat for White-winged Scoters (Melanitta fusca). This area has also pioneered the development of offshore wind energy in North America. The U.S. Bureau of Ocean Energy Management (BOEM) has established 9 Wind Energy Area (WEA) lease blocks along the Atlantic Outer Continental Shelf in areas that may provide important staging and wintering habitat for scoters and other species of sea ducks. Concern over the potential impact of offshore wind energy on sea duck populations has led to efforts to develop models to understand their distribution, habitat use, and site fidelity. We used satellite telemetry to document winter phenology and site fidelity, as well as fine-scale resource selection and habitat use, of 40 White-winged Scoters along the southern New England continental shelf. Scoters spent over half of the annual cycle on the wintering grounds and demonstrated a high degree of interannual site fidelity to composite core-use areas. Sizes of individual 50% core-use home ranges were variable (X = 868 km2; range: 32-4,220 km2) and individual 95% utilization distributions ranged widely (X = 4,388 km2; range: 272-18,235 km2). More than half of all tagged birds occupied 2 or more discrete core-use areas that were up to 400 km apart. Throughout the study area, scoters selected areas with lower salinity, lower sea surface temperature, higher chlorophyll-a concentrations, and higher hard-bottom substrate probability. Resource selection function models classified 18,649 km2 (23%) of the study area as high probability of use, which included or immediately bordered ~420 km2 of proposed WEA lease blocks. Future offshore wind energy developments in the region should avoid key habitats highlighted by this study and carefully consider the environmental characteristics selected by sea ducks when planning and siting future WEAs. Copyright � American Ornithological Society 2019. All rights reserved.

Publication Title, e.g., Journal