Landscape attributes as controls on ground water nitrate removal capacity of riparian zones

Document Type


Date of Original Version



Inherent site factors can generate substantial variation in the ground water nitrate removal capacity of riparian zones. This paper examines research in the glaciated Northeast to relate variability in ground water nitrate removal to site attributes depicted in readily available spatial databases, such as SSURGO. Linking site-specific studies of riparian ground water nitrate removal to spatial data can help target high-value riparian locations for restoration or protection and improve the modeling of watershed nitrogen flux. Site attributes, such as hydric soil status (soil wetness) and geomorphology, affect the interaction of nitrate-enriched ground water with portions of the soil ecosystem possessing elevated biogeochemical transformation rates (i.e., biologically active zones). At our riparian sites, high ground water nitrate-N removal rates were restricted to hydric soils. Geomorphology provided insights into ground water flowpaths. Riparian sites located on outwash and organic/alluvial deposits have high potential for nitrate-enriched ground water to interact with biologically active zones. In till deposits, ground water nitrate removal capacity may be limited by the high occurrence of surface seeps that markedly reduce the time available for biological transformations to occur within the riparian zone. To fully realize the value of riparian zones for nitrate retention, landscape controls of riparian nitrate removal in different climatic and physiographic regions must be determined and translated into available spatial databases.

Publication Title, e.g., Journal

Journal of the American Water Resources Association