Document Type

Article

Date of Original Version

2015

Department

Natural Resources Science

Abstract

Beaver-created ponds and dams, on the rise in the northeastern United States, reshape headwater stream networks from extensive, free-flowing reaches to complexes of ponds, wetlands, and connecting streams. We examined seasonal and annual rates of nitrate transformations in three beaver ponds in Rhode Island under enriched nitrate-nitrogen (N) conditions through the use of 15N mass balance techniques on soil core mesocosm incubations. We recovered approximately 93% of the nitrate N from our mesocosm incubations. Of the added nitrate N, 22 to 39% was transformed during the course of the incubation. Denitrification had the highest rates of transformation (97–236 mg N m−2 d−1), followed by assimilation into the organic soil N pool (41–93 mg N m−2 d−1) and ammonium generation (11–14 mg N m−2 d−1). Our denitrification rates exceeded those in several studies of freshwater ponds and wetlands; however, rates in those ecosystems may have been limited by low concentrations of nitrate. Assuming a density of 0.7 beaver ponds km−2 of catchment area, we estimated that in nitrate-enriched watersheds, beaver pond denitrification can remove approximately 50 to 450 kg nitrate N km−2 catchment area. In rural watersheds of southern New England with high N loading (i.e., 1000 kg km−2), denitrification from beaver ponds may remove 5 to 45% of watershed nitrate N loading. Beaver ponds represent a relatively new and substantial sink for watershed N if current beaver populations persist.

Share

COinS