Effect of fiber-matrix interface on toughening mechanisms during dynamic fracture of fiber reinforced materials

Document Type

Conference Proceeding

Date of Original Version

12-1-1991

Abstract

Dynamic photoelasticity is used to study the effect of the fiber matrix interface and fiber orientation on dynamic crack growth in fiber reinforced brittle matrix composites. Weakly bonded fibers result in a greater reduction in the dynamic stress intensity factor KID, and the crack jump distance compared to well bonded fibers. Orientation of brittle fibers, with respect to loading direction, impairs the ability of fibers to lower KID, while ductile fiber orientation produces no significant change in KID. Weakly bonded fibers, alligned with the loading direction, result in a higher fiber debonded length and debonding rate and also higher crack closing forces compared to well bonded fibers. Fractography and in-situ high speed photography has been used to explain the interaction of a dynamic crack front with a reinforcing fiber.

Publication Title, e.g., Journal

American Society of Mechanical Engineers, Applied Mechanics Division, AMD

Volume

130

This document is currently not available here.

Share

COinS