Electrical behavior of carbon nanotube reinforced epoxy under compression

Document Type

Conference Proceeding

Date of Original Version

1-1-2011

Abstract

An experimental investigation was conducted to study the effect of quasi-static and dynamic compressive loading on the electrical response of multi-wall carbon nanotube (MWCNT) reinforced epoxy nanocomposites. An In-situ polymerization process using both a shear mixer and an ultrasonic processor were employed to fabricate the nanocomposite material. The fabrication process parameters and the optimum weight fraction of MWCNTs for generating a well-dispersed percolation network were first determined. Absolute resistance values were measured with a high-resolution four-point probe method for both quasi-static and dynamic loading. In addition to measuring the percentage change in electrical resistance, real-time damage was captured using high-speed photography. The real-time damage was correlated to both load and percentage change in resistance profiles. The experimental findings indicate that the bulk electrical resistance of the nanocomposites under both quasi-static and dynamic loading conditions initially decreased between 40%-60% during compression and then increased as damage initiated and propagated.

Publication Title, e.g., Journal

Conference Proceedings of the Society for Experimental Mechanics Series

Volume

1

Share

COinS