Document Type
Article
Date of Original Version
7-31-2017
Abstract
In this work, we theoretically analyze the performance characteristics of a near-field thermophotovoltaic system consisting a Mie-metamaterial emitter and GaSb-based photovoltaic cell at separations less than the thermal wavelength. The emitter consists of a tungsten nanoparticle-embedded thin film of SiO 2 deposited on bulk tungsten. Numerical results presented here are obtained using formulae derived from dyadic Green’s function formalism and Maxwell–Garnett-Mie theory. We show that via the inclusion of tungsten nanoparticles, the thin layer of SiO 2 acts like an effective medium that enhances selective radiative heat transfer for the photons above the band gap of GaSb. We analyze thermophotovoltaic (TPV) performance for various volume fractions of tungsten nanoparticles and thicknesses of SiO 2.
Citation/Publisher Attribution
Ghanekar, A.; Tian, Y.; Zhang, S.; Cui, Y.; Zheng, Y. Mie-Metamaterials-Based Thermal Emitter for Near-Field Thermophotovoltaic Systems. Materials 2017, 10, 885. doi: 10.3390/ma10080885
Available at: https://doi.org/10.3390/ma10080885
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.