Nonlinear model reduction based on smooth orthogonal decomposition

Document Type

Conference Proceeding

Date of Original Version

12-1-2007

Abstract

Large scale nonlinear model reduction based on smooth orthogonal decomposition (SOD) is presented. SOD is a multivariate time series analysis tool that provides optimal, low-dimensional representation of time series that are as smooth in time as possible. SOD is used to identify linear subspaces containing linear and nonlinear normal modes and span by smooth orthogonal modes (SOMs). Large finite element model (FEM) of a vibrating cantilever beam in a two-well potential is used to illustrate the model reduction. The SOMs of the simulated unforced, undamped FEM are used for model reduction. The performance of damped, forced FEM is then compared with three and five SOM based reduced-order models for various forcing parameters and close agreement is observed even for three SOM based reduced order model.

Publication Title, e.g., Journal

Proceedings of the 9th IASTED International Conference on Control and Applications, CA 2007

This document is currently not available here.

Share

COinS