Document Type
Article
Date of Original Version
5-22-2018
Abstract
Radiative thermal transport of metamaterials has begun to play a significant role in thermal science and has great engineering applications. When the key features of structures become comparable to the thermal wavelength at a particular temperature, a narrowband or wideband of wavelengths can be created or shifted in both the emission and reflection spectrum of nanoscale metamaterials. Due to the near-field effect, the phenomena of radiative wavelength selectivity become significant. These effects show strong promise for applications in thermophotovoltaic energy harvesting, nanoscale biosensing, and increased energy efficiency through radiative cooling in the near future. This review paper summarizes the recent progress and outlook of both near-field and far-field radiative heat transfer, different design structures of metamaterials, applications of unique thermal and optical properties, and focuses especially on exploration of the tunable radiative wavelength selectivity of nano-metamaterials.
Citation/Publisher Attribution
Tian, Y.; Ghanekar, A.; Ricci, M.; Hyde, M.; Gregory, O.; Zheng, Y. A Review of Tunable Wavelength Selectivity of Metamaterials in Near-Field and Far-Field Radiative Thermal Transport. Materials 2018, 11, 862. https://doi.org/10.3390/ma11050862
Available at: https://doi.org/10.3390/ma11050862
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Comment
Otto J. Gregory is a professor in the Department of Chemical Engineering.
Yanpei Tian, Alok Ghanekar, Mikhail Hyde and Yi Zheng are from the Department of Mechanical, Industrial and Systems Engineering.