"Asymptotic behavior of a discrete-time density-dependent SI epidemic m" by M. R.S. KulenoviĆ, M. NurkanoviĆ et al.
 

Asymptotic behavior of a discrete-time density-dependent SI epidemic model with constant recruitment

Document Type

Article

Date of Original Version

1-1-2021

Abstract

We use the epidemic threshold parameter, R, and invariant rectangles to investigate the global asymptotic behavior of solutions of the density-dependent discrete-time SI epidemic model where the variables Sn and In represent the populations of susceptibles and infectives at time n= 0 , 1 , … , respectively. The model features constant survival “probabilities” of susceptible and infective individuals and the constant recruitment per the unit time interval [n, n+ 1] into the susceptible class. We compute the basic reproductive number, R, and use it to prove that independent of positive initial population sizes, R< 1 implies the unique disease-free equilibrium is globally stable and the infective population goes extinct. However, the unique endemic equilibrium is globally stable and the infective population persists whenever R> 1 and the constant survival probability of susceptible is either less than or equal than 1/3 or the constant recruitment is large enough.

Publication Title, e.g., Journal

Journal of Applied Mathematics and Computing

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 6
  • Usage
    • Abstract Views: 3
  • Captures
    • Readers: 6
see details

Share

COinS