Document Type

Article

Date of Original Version

2013

Abstract

Immune responses to cross-conserved T cell epitopes in novel H1N1 influenza may explain reports of diminished influenza-like illnesses and confirmed infection among older adults, in the absence of cross-reactive humoral immunity, during the 2009 pandemic. These cross-conserved epitopes may prove useful for the development of a universal H1N1 influenza vaccine, therefore, we set out to identify and characterize cross-conserved H1N1 T cell epitopes. An immunoinformatic analysis was conducted using all available pandemic and pre-pandemic HA-H1 and NA-N1 sequences dating back to 1980. Using an approach that balances potential for immunogenicity with conservation, we derived 13 HA and four NA immunogenic consensus sequences (ICS) from a comprehensive analysis of 5 738 HA-H1 and 5 396 NA-N1 sequences. These epitopes were selected because their combined epitope content is representative of greater than 84% of pre-pandemic and pandemic H1N1 influenza strains, their predicted immunogenicity (EpiMatrix) scores were greater than or equal to the 95th percentile of all comparable epitopes, and they were also predicted to be presented by more than four HLA class II archetypal alleles. We confirmed the ability of these peptides to bind in HLA binding assays and to stimulate interferon-γ production in human peripheral blood mononuclear cell cultures. These studies support the selection of the ICS as components of potential group-common H1N1 vaccine candidates and the application of this universal influenza vaccine development approach to other influenza subtypes.

Share

COinS