"Propagation of Kuroshio Extension Meanders between 143° and 149°E" by Karen L. Tracey, D. Randolph Watts et al.
 

Document Type

Article

Date of Original Version

2012

Department

Oceanography

Abstract

A two-dimensional array of current- and pressure-recording inverted echo sounders provided synoptic measurements of the upper and deep fluctuations in the Kuroshio Extension between 143° and 149°E with mesoscale resolution. Downstream-propagating meanders with periods of 3–60 days were always present between June 2004 and September 2005. Propagation speeds were estimated by two methods: spectral analysis of path displacements and complex empirical orthogonal functions (CEOF) analysis of along-path anomalies. The two methods produced similar results. Phase speeds increased smoothly from 10 km day−1 (0.12 m s−1) for meanders with wavelengths and periods [λ, T] = [420 km, 40 days] to 35 km day−1 (0.41 m s−1) for [λ, T] = [220 km, 6 days] meanders. This empirically derived dispersion relationship is indistinguishable from that obtained for Gulf Stream meanders downstream of Cape Hatteras. The deep ocean was populated with remotely generated, upstream-propagating eddies composed of a nearly depth-independent current structure. Upper meanders and deep eddies jointly spun up when they encountered each other with the deep eddy offset about a quarter wavelength ahead of the upper meander. Subsequently, as the upper and deep features moved past each other and the vertical offset changed, intensification ceased.

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 27
  • Usage
    • Downloads: 125
  • Captures
    • Readers: 22
see details

Share

COinS