Document Type
Article
Date of Original Version
2016
Department
Oceanography
Abstract
Caldera-forming eruptions of island volcanoes generate tsunamis by the interaction of different eruptive phenomena with the sea. Such tsunamis are a major hazard, but forward models of their impacts are limited by poor understanding of source mechanisms. The caldera-forming eruption of Santorini in the Late Bronze Age is known to have been tsunamigenic, and caldera collapse has been proposed as a mechanism. Here, we present bathymetric and seismic evidence showing that the caldera was not open to the sea during the main phase of the eruption, but was flooded once the eruption had finished. Inflow of water and associated landsliding cut a deep, 2.0–2.5 km3, submarine channel, thus filling the caldera in less than a couple of days. If, as at most such volcanoes, caldera collapse occurred syn-eruptively, then it cannot have generated tsunamis. Entry of pyroclastic flows into the sea, combined with slumping of submarine pyroclastic accumulations, were the main mechanisms of tsunami production.
Citation/Publisher Attribution
Nomikou, P. et al. Post-eruptive flooding of Santorini caldera and implications for tsunami generation. Nat. Commun. 7, 13332 doi: 10.1038/ncomms13332 (2016).
Available at: https://doi.org/10.1038/ncomms13332
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.