Document Type
Article
Date of Original Version
2018
Department
Oceanography
Abstract
Little is known about the presence of organophosphate flame retardants (OPFRs) as a substitute for polybrominated diphenyl ethers in developing countries. This study investigated - for the first time - concentrations, sources and exposure levels of OPFRs in the indoor and outdoor environments of Alexandria, Egypt, in dust and gas-phase samples. Passive samplers were deployed (n = 78) to determine gaseous concentrations, and various dust samples were collected from apartments (n = 25), working places (n = 14), cars (n = 18), and outdoors (OD, n = 30). Indoor concentrations (air: 7.0–64 pg/m3; dust: 150–1850 ng/g) were significantly higher than outdoor (2.0–16 pg/m3 and 83–475 ng/g) concentrations. Tris-1,3-dichloropropyl phosphate (TDCIPP), tris(1-chloro-2-propyl) phosphate (TCIPP), tri (2-butoxyethyl) phosphate (TBOEP) and triphenyl phosphate (TPHP) dominated in all samples with more indoor variabilities. Profiles of OPFRs in OD and floor dust (collected from carpets and floors) were similar but differed from elevated fine dust (collected 1 m above the floor from all available surfaces), possibly due to the influence of carryover of OD by shoes. Despite the high uncertainty in dust – air partitioning coefficients, log transformed values showed significant linear relationships with log octanol – air-partitioning coefficients in all microenvironments, indicating an equilibrium partitioning between dust and vapor. Exposure assessment indicated the importance of the dermal exposure route for adults and ingestion route for children.
Citation/Publisher Attribution
Khairy, M. A., & Lohmann, R. (2019). Organophosphate flame retardants in the indoor and outdoor dust and gas-phase of Alexandria, Egypt. Chemosphere, 220(2019), 275-285. doi: 10.1016/j.chemosphere.2018.12.140
Available at: http://dx.doi.org/10.1016/j.chemosphere.2018.12.140
Figures
Lohmann_OrganophosphateFlame_2018_SI.docx (8343 kB)
Supporting Information
Author Manuscript
This is a pre-publication author manuscript of the final, published article.
Terms of Use
This article is made available under the terms and conditions applicable
towards Open Access Policy Articles, as set forth in our Terms of Use.