Experimental ecology of the temperate scleractinian coral Astrangia danae - II. Effect of temperature, light intensity and symbiosis with zooxanthellae on metabolic rate and calcification

Document Type

Article

Date of Original Version

11-1-1983

Abstract

The combined effects of temperature, light and symbiont density on the metabolic rate and calcification of the temperate coral Astrangia danae were studied experimentally using colonies containing different concentrations of zooxanthellae. After acclimation to five temperatures between 6.5° and 27°C, and incubation at three light levels and in darkness, respiration and photosynthesis were measured and corrected for rates due to commensals alone. Calcification rates were regressed on zooxanthellae concentration and production in order to define "symbiotic" and "non-symbiotic" averages, and the enhancement of calcification by symbiotic interactions in the polyps. Respiration by the polyparium varied less with temperature between 11.5° and 23°C than that of the commensals, suggesting physiological acclimation by the coral tissue. In-vivo zooxanthellae photosynthesis increased linearly with temperature and was near its maximum at 400 μEin m-2 s-1, but the photosynthesis of the endolithic algae of the corallum varied little between 11.5° and 27°C. Calcification at any given temperature was near its maximum at 40 μEin m-2 s-1 in both symbiotic and non-symbiotic corals. CaCO3 deposition increased linearly with temperature in non-symbiotic colonies and in symbiotic colonies incubated in the dark. In symbiotic colonies, calcification in the light increased above these basic rates as temperature rose above 15°C. Below 15°C, symbiotic interactions failed to stimulate calcification, apparently due both to a lowering of zooxanthellae photosynthesis and to a decrease in the enhancing effect of any given level of primary production. © 1983 Springer-Verlag.

Publication Title, e.g., Journal

Marine Biology

Volume

76

Issue

2

Share

COinS