Diffuse spreading, a newly recognized mode of crustal accretion in the southern Mariana Trough backarc basin

Document Type

Article

Date of Original Version

10-1-2021

Abstract

South of the latitude of Guam, the Mariana Trough exhibits both trench-parallel and trench-normal extension. In this study, we examined the locus of trench-normal extension separating the Philippine Sea plate from the broadly deforming Mariana platelet. Along this boundary, we identified three distinct modes of extension and described their distinguishing characteristics using deep-and shallow-towed side-scan sonar and ship multibeam data along with regional geophysical, geochemical, and seismicity data. In the west, the Southwest Mariana Rift is an active tectonic rift exhibiting abundant strong earthquakes up to mb 6.7 and limited evidence of volcanism. In the east, the Malaguana-Gadao Ridge is a seafloor spreading center producing few and weak earthquakes less than mb 5. Between these zones, there is an ∼20-40-km-wide and ∼120-km-long area of high acoustic backscatter characterized by closely spaced volcano-tectonic ridges and small volcanic cones with distributed intermediate-strength seismicity up to mb 5.7. Fresh-looking volcanic rocks with high water contents and strong arc chemical affinities have been recovered from the high-backscatter zone. We interpret this morphologically and geophysically distinct zone as undergoing diffuse spreading, a distributed form of magmatic crustal accretion where new crust forms within a broad zone tens of kilometers across rather than along a narrow spreading axis. Diffuse spreading appears to be a rheological threshold effect enabled by slow opening rates and a high slab-fluid flux that facilitate the formation of a broad zone of weak hydrous lithosphere, within which new crust is accreted. Our findings describe a poorly understood process in plate tectonics, and observations of similar terrains in other backarc basins suggest that this process is not unique to the Mariana Trough.

Publication Title, e.g., Journal

Geosphere

Volume

17

Issue

5

Share

COinS