Low-Ammonium Environment Increases the Nutrient Exchange between Diatom–Diazotroph Association Cells and Facilitates Photosynthesis and N2 Fixation—a Mechanistic Modeling Analysis

Document Type

Article

Date of Original Version

9-1-2022

Abstract

Diatom–diazotroph associations (DDAs) are one of the most important symbiotic dinitrogen (N2) fixing groups in the oligotrophic ocean. Despite their capability to fix N2, ammonium (NH4+) remains a key nitrogen (N) source for DDAs, and the effect of NH4+ on their metabolism remains elusive. Here, we developed a coarse-grained, cellular model of the DDA with NH4+ uptake and quantified how the level of extracellular NH4+ influences metabolism and nutrient exchange within the symbiosis. The model shows that, under a fixed growth rate, an increased NH4+ concentration may lower the required level of N2 fixation and photosynthesis, and decrease carbon (C) and N exchange. A low-NH4+ environment leads to more C and N in nutrient exchange and more fixed N2 to support a higher growth rate. With higher growth rates, nutrient exchange and metabolism increased. Our study shows a strong effect of NH4+ on metabolic processes within DDAs, and thus highlights the importance of in situ measurement of NH4+ concentrations.

Publication Title, e.g., Journal

Cells

Volume

11

Issue

18

Share

COinS