Instability threshold of a negatively buoyant fountain

Document Type

Article

Date of Original Version

5-1-2007

Abstract

Experimental simulations were carried out to investigate the onset of instability in negatively buoyant fountains by injecting glycerin-water mixtures into silicon oil. The transition from a stable to an unstable fountain structure is primarily governed by the Richardson number, and to a lesser extent, Reynolds number, viscosity ratio, Weber number and vent geometry. Transition nominally occurs at a Ri = 1.0. For a fountain issuing from a cylindrical pipe, the major effect of the Reynolds number is in determining whether or not the fountain is laminar or turbulent. The Reynolds number effect can be largely accounted for by basing a corrected Richardson number on the root mean square of the mean velocity. Viscosity ratio deviating from unity has the effect of stabilizing the flow structure and thereby reducing the transition Richardson number. Similarly, interfacial tension stabilizes the flow pattern resulting in a trend of increasing transition Richardson number with increasing Weber number. The results are valid in rectangular vents if the Richardson number and Reynolds number are based on the hydraulic diameter. © Springer-Verlag 2007.

Publication Title, e.g., Journal

Experiments in Fluids

Volume

42

Issue

5

Share

COinS