Document Type
Article
Date of Original Version
2010
Department
Electrical, Computer and Biomedical Engineering
Abstract
Surface electrodes are commonly used electrodes clinically, in applications such as functional electrical stimulation for the restoration of motor functions, pain relief, transcutaneous electrical nerve stimulation, electrocardiographic monitoring, defibrillation, surface cardiac pacing, and advanced drug delivery systems. Common to these applications are occasional reports of pain, tissue damage, rash, or burns on the skin at the point where electrodes are placed. In this study, we quantitatively analyzed the effects of acute noninvasive electrical stimulation from concentric ring electrodes (CRE) to determine the maximum safe current limit. We developed a three-dimensional multi-layer model and calculated the temperature profile under the CRE and the corresponding energy density with electrical-thermal coupled field analysis. Infrared thermography was used to measure skin temperature during electrical stimulation to verify the computer simulations. We also performed histological analysis to study cell morphology and characterize any resulting tissue damage. The simulation results are accurate for low energy density distributions. It can also be concluded that as long as the specified energy density applied is kept below 0.92 (A2/cm4·s−1), the maximum temperature will remain within the safe limits. Future work should focus on the effects of the electrode paste.
Citation/Publisher Attribution
Besio, W., Sharma, V. & Spaulding, J. Ann Biomed Eng (2010) 38: 1111. https://doi.org/10.1007/s10439-009-9891-y
Available at: https://doi.org/10.1007/s10439-009-9891-y
Author Manuscript
This is a pre-publication author manuscript of the final, published article.
Terms of Use
This article is made available under the terms and conditions applicable
towards Open Access Policy Articles, as set forth in our Terms of Use.