Approximating noncausal IIR digital filters having arbitrary poles, including new hilbert transformer designs, via forward/backward block recursion
Document Type
Article
Date of Original Version
12-1-2006
Abstract
In this paper, we consider the design, use, and recursive implementation of noncausal infinite-impulse response (IIR) digital filters. Forward/ backward realization of zero-phase IIR filters is well known for finite data lengths and is also applicable for arbitrary pole locations both inside and outside the unit circle. For systems processing indefinitely long inputs, this can be accomplished by separately filtering blocks of input that are much longer than the effective impulse response duration and combining the block outputs using either the overlap-add method or overlap-save method. Of course, some approximation is required because the corresponding impulse responses have theoretically infinite duration, but the associated error can be made arbitrarily small. In addition to traditional frequency selective filters and arbitrary system designs, we describe new IIR design methods for Hilbert transformers, differentiators, and interpolation networks. © 2006 IEEE.
Publication Title, e.g., Journal
IEEE Transactions on Circuits and Systems I: Regular Papers
Volume
53
Issue
12
Citation/Publisher Attribution
Rader, Charles M., and Leland B. Jackson. "Approximating noncausal IIR digital filters having arbitrary poles, including new hilbert transformer designs, via forward/backward block recursion." IEEE Transactions on Circuits and Systems I: Regular Papers 53, 12 (2006): 2779-2787. doi: 10.1109/TCSI.2006.883877.